Simulation of Neural Behavior

نویسندگان

  • Tatsuo Kitajima
  • Zonggang Feng
  • Azran Azhim
چکیده

The brain is an organ that takes the central role in advanced information processing. There exist great many neurons in our brain, which build complicated neural net‐ works. All information processing in the brain is accomplished by neural activity in the form of neural oscillations. In order to understand the mechanisms of information processing, it is necessary to clarify functions of neurons and neural networks. Although the current progress of experiment technology is remarkable, only experiments by themselves cannot uncover the behavior of only a single neuron. Computational neuroscience is a research field, which fills up the deficiency in experiments. By modeling the essential features of a neuron or a neural network, we can analyze their fundamental properties by computer simulation. In this chapter, one aspect of computational neuroscience is described. At the first, the cell membrane and a neuron can be modeled by using an RC circuit. Next, the Hodgkin-Huxley model is intro‐ duced, which has the function of generation of action potentials. Furthermore, many neurons show the subthreshold resonance phenomena, and the cell membrane is necessary to be modeled by an RLC circuit. Finally, some simulation results are shown, and properties of such neuronal behaviors are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of forging force and barreling behavior in isothermal hot forging of AlCuMgPb aluminum alloy using artificial neural network

In the present investigation, an artificial neural network (ANN) model is developed to predict the isothermal hot forging behavior of AlCuMgPb aluminum alloy. The inputs of the ANN are deformation temperature, frictional factor, ram velocity and displacement whereas the forging force, barreling parameter and final shape are considered as the output variable. The developed feed-forward back-prop...

متن کامل

Simulation and Control of a Methanol-To-Olefins (MTO) Laboratory Fixed-Bed Reactor

In this research, modeling, simulation, and control of a methanol-to-olefins laboratory fixed-bed reactor with electrical resistance furnace have been investigated in both steady-state and dynamic conditions. The reactor was modeled as a one-dimensional pseudo-homogeneous system. Then, the reactor was simulated at steady-state conditions and the effect of different parameters including...

متن کامل

Neuro-ACT Cognitive Architecture Applications in Modeling Driver’s Steering Behavior in Turns

Cognitive Architectures (CAs) are the core of artificial cognitive systems. A CA is supposed to specify the human brain at a level of abstraction suitable for explaining how it achieves the functions of the mind. Over the years a number of distinct CAs have been proposed by different authors and their limitations and potentials were investigated. These CAs are usually classified as symbolic and...

متن کامل

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

A generalized ABFT technique using a fault tolerant neural network

In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...

متن کامل

Optimum Designing of Forging Preform Die for the H-shaped Parts Using Backward Deformation Method and Neural Networks Algorithm

In a closed die forging process, it is impossible to form complex shapes in one stage, and thus it becomes necessary to use preform dies. In the present study, Backward Deformation Method and FE simulation via ABAQUS software has been used in order to design preform die of the H-shaped parts. In the Backward Deformation Method, the final shape of the part is considered as a starting point and u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018